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In this paper we consider stochastic systems with finite state space and counting process output. In 
particular we address the question whether a given system has a minimal representation, where roughly 
speaking minimality means minimality of the size of the state space. We show that minimality is 
connected to a suitably defined notion of observability. Finally we present an algorithm that enables us, 
starting from a given representation, to construct a minimal representation for the same system. 
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INTRODUCTION 

In this paper we treat some problems for counting process systems with a finite 
state space. The main problem we address is the characterization of minimality of 
a system, which means minimality of the state space. The reason why this topic is 
important lies partly in identification problems for such systems in the situation 
where the state process cannot directly be observed. It  is known for instance in 
deterministic linear system theory that a state space, which is too large for 
explaining the behaviour of the output process, contains unobservable compo- 
nents. This implies among other things that if one wants to perform output-based 
parameter estimation one will not be able to identify the true parameter values 
that govern the behaviour of the state process in an unobservable part of the state 
space. For counting process systems to be treated in the next section a similar 
reasoning holds. If for instance one wants to identify transition rates of the state 
process (which turns out to be a Markov process) and if two different states yield 
the same behaviour of the observed counting process, then one is clearly not able 
to distinguish whether the state process assumes one of these two values, let alone 
that one is able to draw reliable conclusions about rates that govern a transition 
from one of these states to the other one. The lesson of these considerations, as is 
well known, is that one should always work with minimal representation of a 
stochastic system. 

1. COUNTING PROCESS SYSTEMS 

Counting process systems form a subclass of what is known as stochastic systems. 
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Roughly speaking a stochastic system without input consists of two stochastic 
processes X and Z where X is called the state process and Z the output process. 
As in deterministic system theory the state process at time t should summarize all 
the relevant information about the past of the system in order to describe the 
future output. Contrary to what can be done in deterministic system theory the 
state process at time t cannot exactly predict the values of Z, for s h t .  It can only 
describe the probabilistic behaviour of the output process. These notions are made 
precise in Definition 1.1 that in abstract terms describes what a stochastic system 
without inputs is. This definition is followed by a more detailed treatment of 
stochastic systems where the output process is a counting process. First we have to 
introduce some notation. Let a complete probability space ( R , F ,  P) be given 
together with a filtration IF. Let X and Z be IF-adapted stochastic processes. Then 
8: = a{Xs, s 2 t }  and 8: = o{Z,, s 2 t }  are the a-algebras generated by the past of 
the processes X and Z. Similarly 9:' =a{X,, s z t }  contains the information of 
the future of X after t. We also use the a-algebra that describes the future 
increments of the output process Z, 9:'' =a{& - Z,, s 2 t } .  

If F1, F2 and B are sigma algebras contained in 9 ,  then we say that Fl and 
g2 are conditionally independent given 3, if for all integrable Fl-measurable 
functions XI  the following relation holds 

We will use the notation (F1, F2 13) E CI. 

DEFINITION 1.1 (van Schuppen [ 5 ] )  A continuous time stochastic system is a 
multiple (R, 9, P, T, IF, X, Z, X, Y) such that 

i) (R, 8 ,  P) is a complete probability space; 

ii) T c R, T an interval; 

iii) IF = {Pt}tGt),, , filtration on (R, F ,  P); 
iv) X and Z are If-adapted processes with values in the measurable spaces .%" 

and Y respectively; 

v) (9:' v F t Z + ,  F t \ a ( ~ , ) )  E CI for all t 20 .  

Formally speaking each of the components of the multiple in Definition 1.1 is 
part of the definition. However if no confusion can arise we will often write (X, Z) 
for a stochastic system. The crucial property in the definition of a stochastic 
system is (v), which says that given a whole past Ft it is sufficient to use only X, 
for the prediction of the future values of X and the future increments of Z. 
Observe that l.l(v) implies that X is a Markov process with respect to the 
filtration IF. Finally it is noticed that usually F, =F: v 9: and T=(- co, co) or 
T = [0, a ) .  

Clearly the above definition is too abstract for practical purposes. In particular 
cases one has to specify the distribution of the state and output process. One way 
to do this is to pose stochastic differential equations that X and Z satisfy. In this 



CONDITIONALLY POISSON SYSTEMS 57 

paper we treat stochastic systems where the output process is a counting process 
and X a finite state process. 

DEFINITION 1.2 A counting process system is a stochastic system where the output 
Z is a counting process. We write in this case N for the output process instead of 
Z. The shorthand notation is then (X, N) for a counting process system with state 
process X. 

We will treat in more detail the class of conditionally Poisson systems, 

DEFINITION 1.3 (Brtmaud [I]) Let N:R x [0, co)-+N be a counting process, 
[F-adapted with Doob-Meyer decomposition w.r.t. [F:dNt = At dt + dm,. Let 9; = 
a(A,, tzO). N is called a conditionally Poisson process, or a doubly stochastic 
Poisson process, iff for all t, h 2 0, u E R 

So conditioned upon gt v 9:N,+,-Nt has a Poisson distribution with mean 
j:+h A, ds. 

PROPOSITION 1.4 N is a conditionally Poisson process iff m as given in 1.3 is a 
martingale w.r.t. e= {@t),20, where gt=F, v 9;. 

Proof If N is conditionally ~oisson,  then 

Conversely assume that m is a martingale w.r.t. $. Apply the stochastic calculus 
rule to exp(iuN,) to obtain 

t + h 

= exp(iuN,) + (eiU - 1) j exp(iuN, -)(A, ds + dm,). 
t 

Take conditional expectation w.r.t. gt and get 

t + h  

ECexp(iu~, +,) I@,] = exp(iuN,) +(eiu - 1) 5 ~ [ e x p ( i u ~ , )  (&]A, ds. 
t 
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Define g(t + h, t) = E[exp(i~(N,+~ - N,)) I$,]. Then we get 

r + h  

g(t + h, t) = 1 + (ei" - 1) j g(s, t)l, ds, 
t 

from which we find g(t + h, t) = exp((eiU - 1) [:+h As ds). 

Next we present a method for the construction of a counting process system. 
Let a probability space ( R , 9 , P o )  be given together with a standard Poisson 
process N and a Markov process X (with state space X) defined on it such that N 
and X are independent processes. Notice that such a probability space always 
exists. We assume that X has cadlag paths. Consider the following filtrations: 
EN, FX, 5 =  (9: v F:),,,, f = {F: v F ~ ) , , , .  The following observation is 
important. Let &, = N, - t. By definition lii is an EN-martingale. However because of 
the independence assumption & is also an 5- and if-martingale. Similarly X is also 
Markov with respect to the filtration IF. Let A:[O, oo) x %+(O, m) be a measurable 
function such that E, Sb A(s, X,) ds < co, V t. Write A, = l(t ,  X,-). Then {A,) is clearly 
both IF and F-predictable. Then M defned by M, = fi (A, - 1) dfi, is an @- 
martingale and let A, = b(M,). Then 

and A is an 5- and F-local martingale. We make the following assumption: 
EoA, = 1, V t 2 0. We can now define a new measure P on ( a ,  #,) = (a ,%) as 
follows. If A E gt then by definition P(A) = Eo[l,A,]. The extension to gm follows 
by Caratheodory's theorem. Observe that the restriction of P to $ is absolutely 
continuous with respect to the restriction of P to $, with A, as Radon-Nikodym 
derivative and that A,>O Po as .  Observe also that the restrictions of P and Po to 
9: coincide. 

PROPOSITION 1.5 Under the new measure P 

r 

i) m, = N, - j I, ds defines a martingale with respect to IF and e; 
0 

ii) X is a Markov process with respect to 5. 

Proof The first assertion follows from Girsanov's theorem (van Schuppen and 
Wong [6]). So here we prove only (ii). Let f be a bounded measurable function on 
3 and h > 0. Then because A, is the Radon-Nikodym derivative d~ 1 gt /dp0 1 9, 
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In the second equality we have used the fact A, is 9,-measurable and in the 
third one that X is F-Markov under Po. I 
THEOREM 1.6 Under the new measure P the pair (X, N) forms a stochastic system. 

Proof From part (i) of Proposition 1.5 and Proposition 1.4 we obtain that N is 
conditionally Poisson. Notice that we even have 

Hence 

which shows that 

(9PN+,%19;Y+)~cz ,  

The fact that X is F-Markov yields 

(9: +, % 1 o(X,)) E CI, 

Now we can use the following result which is obvious. Let F,, F,, G be 
o-algebras. Then (F,, F, I G) E CI and (F,, F, ( G  v F,) E CI is equivalent with 
(F,, F, v F,IG)ECI. In our case we take G=o(X,), F2=9:+, F, =Rt and 
F, = 9 P N +  and we obtain (9,,  9:' v PAN+ t I @ & ) )  E CI. I 

Thus we have constructed a stochastic system where (as always) X is a Markov 
process and the output process is a conditional Poisson process. Notice that so far 
we have used an evolution equation for N whereas for X we only have .the 
Markov property. The next objective is to describe the evolution of X in terms of 
a stochastic differential equation. Throughout the rest of this chapter the following 
assumption will be in force. 

Assumption 1.7 The state process X takes its values in the finite set %= 
{x,, . . . , x,), where the xi are different. Moreover for all i and t > O:P(X, = xi) > 0. 

Define Y:R x [0, co)-+{O, 1)" by its components &: = I{,, =,,). Denote by @(t,  s)  
the matrix of transition probabilities of X. That is for t z s ,  with the notation 
z+ = z -  ' I{,,,, and the understanding 010 = 0 

Then we have the following well-known facts. Semigroup property: @t , s )=  
@(t ,  u)@(u, s) for t 2 u 2 s. Assume that for all t 2 0 the following limit exists 
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1 
A(t): = lim - [@(t + h, t )  - I ] .  

h ~ 0  h 

A(t)  will be called the generator of X at time t. So A(t)  has nonpositive diagonal 
elements, the other entries are nonnegative and the column sums are zero. 

Proposition 1.8 gives a representation of Markov processes in terms of a linear 
stochastic differential equation driven by a martingale. 

PROPOSITION 1.8 Let X : R  x [0, a ) + %  be a stochastic process, [F-adapted and let Y 
be associated with X as before. Assume that Y satisfies 

Here A:  [0, co)+Rn " " i s  a Lebesgue measurable function (deterministic!) and mY an 
F-adapted martingale. Then X and Y are [F-Markov processes, with generator A(t). 
Conversely, i f X  is IF-Markov with generator A(t) ,  then Y satisfies (2). 

Proof (Spreij [4] )  I 
Next we give a result on Markov solutions of stochastic differential equations 

(see also Protter [3] for related problems). 

PROPOSITION 1.9 Let X be the solution of the stochastic dflerential equation 

where mx is an [F-martingale and g:[O, co) x %-+IF!. Assume that the jump measure p 
of X admits a compensator v (with respect to IF and P)  such that v(dt, d y , o ) =  
p(t, X , (o ) ,  dy) dt. Then X is an IF-Markov process. 

Proof We show that for the indicator process Y the representation of 
Proposition 1.8 holds. From (3)  we get the stochastic calculus rule for all k z O :  

[(X, + - X: - k ~ : -  'y]p( t ,  X,, dy) 

Here dfiik) summarizes all the martingale terms in (4). In a more compact notation 
we can write (4 )  as 

dX: =gck)(t, X,)  dt + d61k) ( 5 )  

where g(k):[O, co) x %e"-rlR. Now we can write X: as [ x i ,  . . . , x i ]  Y, and gck)(t, X,) as 
~ ( ~ ) ( t )  Y, where ~ ( ~ ) ( t )  = Cg(k)(t, xl), . . . , g(k)(t, x,)]. Introduce the following notation. V 
is the ( n  x n) matrix with kth row equal to [x$- ', . . . , xt;  ' 1  ( k  = 1,. . . , n). G(t )  is the 
( n  x n) matrix with kth row ~ ( ~ - ' ) ( t )  ( k =  1,. . . , n). M ,  is the martingale with 
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components fijk). If we consider (5) as a system of equations for k =0, . . . , n- 1 we 
can summarize it (with G(t) and V as defined above) as 

Observe that V is a Vandermonde matrix, that is nonsingular because all the x i  
are different. Let A(t)= V-'G(t) and My= V-'A, then (6) becomes 

Because M is an F-martingale and A(t) is nonrandom, we obtain from (7) by 
applying Proposition 1.8 that X is [F-Markov, with generator A(t). 1 

If we collect the above results we get the following 

THEOREM 1.10 Let the process X and the counting process N satisfy the following 
equation 

dX, =g(t, X,) dt + dm:, Xo 

dN, = i(t ,  X,) dt + dm,, No = 0. 

Here 1 and g are measurable functions from [0, oo) x 55 to R and R+ respectively 
and mX and m are If-martingales. Assume moreover that m is a martingale with 
respect to g= (9; v 9:) and that the jump measure p of X admits a compensator v 
of the form v(dt, dy, o) =p(t, X,(w), dy) dt. Then the pair (X, N) is a counting process 
system. 

2. MINIMALITY O F  CONDITIONALLY POISSON SYSTEMS 

In this section we will confine ourselves to stationary systems., This means that the 
functions A, g and 2 in Theorem 1.10 are not explicitly dependent on t. So we use 
the representations 

Here C is a row vector in R-with elements ci = I (x i ) .  
Equation (8) is called the forward representation of the system (X, N). It is also 

possible to give a backward representation. The starting point of this section is the 
system Eq. (8). The word minimality in the title refers to the minimality of size of 
the state space 55 in a way to be made precise below. The external behaviour of 
the system (X, N) is the process N. We call (X, N) minimal if we cannot find a 
system (X, N) where rl has a smaller state space than X. Observe that the external 
behaviours (X, N) and (X, N) are both given by the same process N. For (8, N) 
we use Eq. (8) with I: A and C replaced with 9; C, A. 
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DEFINITION 2.1 The forward representation (8) of the system (X, N) is called 
strongly reducible if there exists a set iT of lower cardinality than 3 and a function 
f :X+$ such that with 8,= f(X,), the pair (8, N) is a stochastic system with a 
forward representation of the form (8) and such that CY,= CF. In this case (X, N) 
is called strongly forwardly reducible. If (X, N) is not strongly forwardly reducible, 
it is called strongly forwardly minimal. 

Some remarks are appropriate. 
1) If (X, N) is strongly reducible then the "new" state process 8 is again 

Markov. 
2) The adverb strongly in Definition 2.1 can be thought of as opposed to 

weakly. One may call a system weakly reducible if there exists a counting process 
system ( 8 ,  R) on some possibly different probability space (a, P, P )  such that the 
state space of 8 has strictly smaller cardinality than that of 8 and such that IV is 
equal to N in distribution. One can also define strong reducibility for the 
backward representation of (X, N). We will not treat weak problems and problems 
for the backward representation. For this reason we will speak of minimality and 
reducibility throughout this section when we mean strong forward minimality and 
strong forward reducibility. 

The problem that we want to treat is the characterization of minimal counting 
process systems. In view of Remark 1 above we first focus our attention on 
functions of a Markov process. 

From the equivalence of [F-Markov processes and solutions of certain linear 
stochastic differential equations (Propositions 1.7 and 1.8) it is easy to see when 
functions of a Markov chain again yield a Markov chain. A similar result also 
holds for nonstationary chains (Spreij [4]). 

To be specific let as before X be a [F-Markov chain with state space 3. Let H be 
another set and f :X+H a function. Clearly f (X) is again Markov if f is injective. 
To avoid trivialities let us assume that H = {h,, . . . , h,), m < n and that f is onto. 
Write Z,= f(X,). Associate with Z the indicator process W as usual: 

Define F E  Rmxn  by Fij= l(f~,,,,,i~. Notice that l iF=l ; ,  where 1, is a column 
vector with as elements + 1. Then w= FY,. Notice that because f is onto, F has 
rank m, i.e. it has full row rank. Let K E  (WnX'"-"' be a fixed matrix such that its 
columns span Ker F. Let as before A be the matrix of transition intensities of X. 
We have the following theorem, similar to a result in discrete time (Kemeny and 
Sneil [2, p. 1261). 

THEOREM 2.2 Let X be [F-Markov with finite state space X. Let f :3+H. Then 
f(X) is again [F-Markov iff FAK =O where the columns of K span Ker F and F is 
related to f as indicated above. If this condition is satisfied, then the matrix B of 
transition intensities of f(X) is given by B= FAE, where E is any right inverse of F. 

Proof (Spreij [4]) I 
We will work with a special right inverse of F, the Moore-Penrose inverse 

which is defined as F +  = FT(FFT)-l.  Because of the prominent role that matrices 
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F as defined before play, we will refer to these as reduction matrices. Observe that 
the only invertible transformations of the state space X are permutations, which 
correspond to special reduction matrices F, the permutation matrices, that also 
have the property F1= 1. 

PROPOSITION 2.3 The pair (X, N) is reducible iff there exists a reduction matrix F 
such that with A =  FAF', C =  CF' the equalities FA=AF and C = C F  hold. 
Moreover for the reduced system (R, N) the generator of R is A and the intensity of 
N is given by CE. In this case one says that F reduces (X, N). 

Proof Obvious in view of Remark 1 after Definition 2.1. 

Remark Observe that from purely algebraic considerations FA= A F  implies 
that indeed A is a generating matrix of some Markov process. Indeed, let k=k(j) 
be the unique integer such that Fkj= 1. Then 

Now if i=  k, then A i k = C l + j ~ i l ~ l j +  A ~ ~ ~ C ~ # ~ A ~ ~ +  A ~ ~ = o .  And if i#k, then 
Aik =El + FiIAlj 2 0. Furthermore 1 TA = 0. Observe also that FA = AF is equivalent 
with FcD(t) = @(t)F, where O(t) = exp(At) and @(t) = exp(At). 

Since the stochastic nature of the pair (X, N) is determined by the pair (A, C) in 
view of Eq. (8), we will often speak of minimality or reducibility of (A, C) instead 
of (X, N). 

Observe that the reduction procedure is transitive, which means the following. 
Suppose F, reduces (X, N) into a new system (X,, N) and suppose that F, reduces 
(X,, N). Then F2F, reduces the original system (X, N). Indeed if F, reduces (X, N) 
then F,A=A,F, for A,=F,AF: and C=C,F, for C,=CF:. If then also F, 
reduces (X,, N), then we can write F,A, =A,F, and C,=C,F,. But then 
F2F,A= F2A,F, = A2F2F, and C=C,F,  =C,F,F, which is what we have to 
prove. Notice however that given a reduction matrix F that reduces (X, N) one 
cannot always decompose F as F= F,F,, where F, reduces (X, N) and F, reduces 
(XI, N). A simple example is the following. Suppose that X has generator 

and N has constant intensity 1 = illT& Then clearly F = [l 1 11 reduces (X, N) 
but no reduction matrix F E R2 reduces (X, N) as can easily be checked. 

DEFINITION 2.4 Let the row vector C E  Rn be given. Then D is defined to be the 
diagonal matrix diag(C) which has as the jth diagonal element cj. For UER,  
D(u) = (eiu - l)D. 

LEMMA 2.5 Let F be a reduction matrix, with right inverse F+ and let K be a 
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matrix whose columns span Ker F. Let e = C F +  and D =  FDF'. T h e  following 
statements are equivalent 

i) C = C F ;  
ii) FDK = 0;  
iii) F D = b F .  

Proof (i)*(ii): 

Because of the special form of the matrix F, there is only one nonzero element in 
each column. Hence a product F i k F ,  equals zero if i#1. Therefore the last 
summation can be written as 

(ii)=(iii) FDK =O means that FD is contained in the left kernel of K which is 
F. Hence there is a matrix L such that FD= LF. But then by postmultiplying with 
F+ we obtain L= FDF+ =D. 

(iii)*(i) Fd =DF implies that l T F ~  = i T D ~  or l T ~  = i T D ~ .  However l T ~  = c 
andlTD=C. I 

Remark Assume that FD=DF for some reduction matrix F. Then D is 
necessarily diagonal. Indeed we have from this assumption: Fijcj=DikFkj+ 
~ , , j D i i F , j .  Assume that i # k  and multiply this equation with Fkj.  Then, since 
FijFkj=O for i # k we have 0 =DikFkj,  and hence D i k x j  F,~=O. Since the summa- 
tion zj Fkj  & 1 for all k, we have Dik = 0. 

LEMMA 2.6 Let F and K be as in Lemma 2.5 and let ei be the ith basis vector of 
Rn. Let ( X ,  N )  be a stochastic system as in (8 ) .  Assume that FAK=O. Then F 
reduces ( X ,  N )  if C is such that Fek = Fej for some k and j implies ck = cj .  

Proof We only have to prove that we can write C = C F ,  where C = C F + .  
Observe first that 

where aij  is the Kronecker symbol. In particular ( F F ) ; = ~ ,  Flk. Observe further- 
more that for all i, j, k ,  ckFlkFij=cjFikF1, because of the assumption on C. Now we 
calculate 
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Remark From Proposition 2.3 it follows that a necessary condition for 
reduction of (X, N) (or (A, C)) is that some of the ci are identical. However this 
condition is not sufficient, since also the transformed process f(X) has to be 
Markov. See the example that follows after Proposition 2.3. 

However if F reduces a pair (A, C), then, as follows from Lemma 2.6, at the 
same time it reduces any other pair (A, c) ,  where c = C F  for some C. Observe that 
here all the Zi may be different, which is not necessarily the case for the ci. This 
means that if F reduces (A, C), it also reduces any other pair (A, c) =(A, CF), if 
there exists a map g such that g(Zj) =ci. Or, equivalently, if there exists a map g 
such that g(&) = c,. Indeed this equivalence holds, because g(ti) =g(Ej  ZjFji) = 
C. (z.)F ..= 1. c . ~ . .  = ci. 1g J 11 I 1  JE 

To see whether a system (X, N) is reducible one may check whether the criteria 
of Proposition 2.3 hold for a reduction matrix F. If the state space 3 is very large 
this is of course quite a task. So we are looking for more easily verifiable criteria. 
It turns out, as can be expected, that a definition of stochastic observability offers 
an alternative approach to find a possible reduction. Before defining this concept, 
we have to introduce some notation and we also need some properties that are 
satisfied by the objects that play a role in the following definition. 

DEFINITION 2.7 Let for each integer k z l ,  Uk be the set of bounded left 
continuous functions from IW' to Rk. Write U = U' and if u E Uk, then u(t) will be 
written as a row vector. Define for U E  U, V E  Urn, a reduction matrix F E R m x n  and 
T Z t Z O  

Because (X, N) is a stochastic system, we may replace the conditioning o-algebra 
in (9) by a(X,). Hence there exists a deterministic h",.(t, T ) e @ l X n ,  such that 
g?"(t, T) = h';:"(t, T)Y,. 

The following proposition gives a representation for h?"(t, T) as defined above. 
We use the following notation throughout the rest of this section. Let x be a row 
or column vector in Rn. Then diag(x) is the n x n  diagonal matrix with ith 
diagonal element equal to xi. Note that g$"(t, T) can be interpreted as a 
conditional characteristic function of part of the future behaviour of the system, 
given its entire past. 

PROPOSITION 2.8 Let h?"(t, T) be as in Definition 2.7. Then it satisfies the integral 
equation: 



66 P. SPREIJ 

T 

h? "(t ,  T )  = 1 + 1 h? "(s, T ) ( i  diag(v(s)F) + D(u(s)))@(s - t )  ds. (10) 
t 

In the points where h?"(., T )  is dgerentiable, we have 

a 
- at h; " ( t ,  T )  = - hg "( t ,  T ) ( i  diag(v(t) F )  + D(u(t)) + A). ( 1 1 )  

Proof We suppress in this proof the dependence on u, v and F. 
Let g ( T )  = exp(i  J,T u(s) d N ,  + i J,T u(s)F Y, ds). Then from the stochastic calculus 

rule we obtain 

g ( T )  = 1 + j g(s -)(eiu("- 1 )  d N s +  j g(s)iu(s)FY, ds. 
0 0 

(12) 

Now we take conditional expectations in (12) w.r.t. R=2Ft  v 9 % .  Because C Y  
is also the Kintensity of N ,  we get 

Define d(t ,  T )  = E[g( t ) -  ' g ( T )  1 e] =g(t)  - E E ( T )  I g t ] .  Then (13) yields 

T 

g(t ,  T )  = 1 + J g(t ,  s)((eiu("- l)CY,+ iv(s)FY,) ds. 
t 

So, g(t ,  T )  = exp(JT ((eiu(" - l ) C  + iv(s)F) Y, ds). From this expression we also obtain 
a "backward" integral equation: 

T 

g(t, T )  = 1 + J g(s, T)((eiu(" - 1)C + iv(s)F) Y, ds. (14) 
f 

Define now g(t, T ) =  E[g(t ,  T ) I F t ] ,  and observe that this is indeed the quantity 
in Definition 2.7. So we can write g(t, T )  = h(t, T)Y;. Then from (14) 
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Or, since lTI.; = 1 ,  g(t, T )  = h(t, T )  I.; and (15) has to hold for all possible outcomes 
of I.;, we get h(t, T )  = lT  + h(s, T)(D(u(s))  + i  diag(v(s) F)@(s - t )  ds. This proves 
(10). 

Furthermore, if differentiation w.r.t. t  is allowed, (10) yields 

dh 
- ( t ,  T )  = - h(t, T)(D(u( t ) )  + i  diag(v(t)F)) 
at 

because lTA=O. Hence ( 1  1 )  holds. 1 
In several cases an explicit expression for h$"(t, T )  is available. We need the 

following notation. Let M I ,  . . . , M ,  be square matrices of the same order. Then we 
denote by n:=, * M i  the ordered product M,M,-I . . . M I .  

COROLLARY 2.9 Let t=t,<t,<.. .<t,=T. Let for j=1, ..., k,  u j e R  and v j e R m  
and define u(s) = C?=, uj l ( I ,_  , , r , l ( ~ ) ,  U ( S )  =I?= v j l o j _  ,, t j l ( ~ ) .  Then with this choice of 
the functions u and v we have 

Proof Follows directly from Eq. (11). 

The usefulness of the h$"(t, T )  is partly the content of the next lemma. 
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LEMMA 2.10 Assume that F reduces (X, N). Let X = K e r  F and K be a matrix 
whose columns span X. Then &"t, T)KeO, and hence there exists a factorization 
h$ "(t, T) = 6"~ "(t, T)F. 

Proof Observe first that, always, F diag(v(s)F) = diag(v(s))F. From the fact that 
F reduces ( A ,  C), we have FAK= FDK=O. Hence there exist matrices N,, Nl(t) 
and N, such that AK = KN,, @(t)K = KN,(t), DK = KN,. Therefore, with suppres- 
sion of the dependence on u, u and F: 

T 

= 0 +  { h(s, T)K(iN(s) +(eiu("- l)N,)N,(s- t) ds. (17) 
f 

Since h(t, T)K=O is a solution of (17), and since solutions are unique, the proof 
is finished. 

Apparently, for stepfunctions u and v as in Corollary 2.9, only the differences 
tj-tj- ,  are important. Therefore we introduce functions h$,",t) as follows. Let 
{tj)j"=, c R f ,  {uj)j"=, c R, {vj)?=, c Rm and define h$,",t) as in (16) with the 
differences tj- tj- , replaced by tj. Let H be the cone {(t, T) E RZ: T 1 t 1 0 ) .  Clearly 
for all u E U, U E  Urn and (t, T) E H, h$"(t, T) induces a linear map from R"into C. 
So we can introduce h, E 9 ( W ,  CU H, by hF(u, v, (t, T)) = h$"(t, T) E LZ(Rn, @). 
Denote by A', the kernel of h,. 

In a similar way we can introduce operators h,,,, by considering the functions 
h$<",t), and their kernels A',,,. Now we can prove the following. 

THEOREM 2.1 1 Let XF be Ker h, and X,,, = Ker h,,,. Then 

i) -x,,, ZJA',,,ZJ... and r)j"=,XF,j=XF; 

ii) If for some j X,, = XF, j+ ,, then XF, is D, A and diag(vF) invariant, for all 
v E Rm and XF = A',, j; 

iii) A', c Ker F; 

iv) If moreover h, factorizes as hF = EF, then XF = Ker F. 

Proof Since we work with fixed F, we suppress the dependence on F. For 
notational convenience we also suppress dependence on u and o. 

i) Let f j=t j+, ,  j z 1 .  Let u, =v, u, =u. Then 

Now hj+,(t)A'j+, ~ 0 .  So in particular for t, =0, we get hj(QXj+, eO, which 
shows that 4, , c Xj. 

Certainly A' c Xj, for all j, so X c np =, Xj. But since any u E U and 
V E U ~  are pointwise limits of stepfunctions, also the reversed inequality 
holds. 
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ii) Assume Xj = Xj+ , . Differentiation of (18) with respect to t, gives 

Now take in (19) t,=O, u=O and v = O .  Then 

which yields Xj to be A-invariant. With this information we take in (19) 
t, = O  and u=O but we allow v to be free. This yields Xj is also diag(vF) 
invariant for all v. Similarly Xj is also D(u) invariant for all u, hence D 
invariant. Hence X = n,"=, Xl = Xj. 

iii) From (ii) we know that X is diag(vF) invariant (for all v). Hence 
F diag(vF)X = O  or diag(v)FX = O=FX = 0. 

iv) Obvious in view of (iii). 

PROPOSITION 2.12 The following statements are equivalent. 

i) h? "(t, T) = h", "(t, T)F; 

ii) h"," satisfies the integral equation 

T  

h", "(t, T) = 1 + i h"' "(s, T)(i diag(o(s)) + D(u(s)))@(s - t) ds (20) 
t 

where FD = DF,  F@(t) = @(t)F 

Proof (i)*(ii) From Theorem 2.1 1, we know that Ker F = Ker h, is a D, A and 
diag(u(s)F) invariant subspace of Rn. So there exist matrices D and .A such that 
FD = DF, FA = AF, and as always we have F diag(u(s)F) = diag(v(s))F. Hence 

After postmultiplication with F + ,  the claim follows. 

(ii)=(i) Postmultiply (20) by F, then we see that h"*"(t, T)F satisfies the same 
integral equation as &"(t, T). Because Rs"(T, T)F = lTF = lT = h$"(t, T), the claim 
follows. 1 

The following proposition, that summarizes some of the preceding results forms 
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the basis of Definition 2.14 below and makes it understandable if one keeps the 
interpretation of g",.(t, T) as a conditional characteristic function in mind. 

PROPOSITION 2.13 Let $ = f (X,), Y; = FE;, where the reduction matrix F is 
associated with f as usual. There is equivalence between 

i) ECgk "(t, T) I o(X,)] =g> "(t, T) for all u, v and t S T. 

ii) (9, N) is a stochastic system and g>"(t, T)= E M V ( t ,  T ) IF$  v PjV] for all u, v 
and t5T. 

iii) There exists a factorization &"(t,  T)=h'""(t, T)F. 

Proof (i)*(iii) There exists a matrix Q, such that E[Y;~G(S,)]=Q,~.  (i) then 
implies h>"(t, T) E; = h>"(t, T)Q, f ;  = h>"(t, T)Q,F E;. So take !i"*"(t, T) = h?"(t, T)Q,. 

(iii) +(i) 
E[g> "(t, T) 1 a(X,)] = E[P9 "(t, T)F I; I o(X,)] = E[P9 "(t, T) x I a(X,)] 

= P3"(t, T) = h> "(t, T) Y;. 

(iii) *(ii) 

=g> "(t, T). 

This, together with Proposition 2.12 also shows that ( 9 ,  N) is a stochastic 
system. 

(ii) =(iii) 

for some deterministic &"(t, T) since the last conditional expectation is a function 
of X,. Because f ;=  FI; the result now follows. 1 
D E F ~ N ~ T I ~ N  2.14 The nth order system (X, N) is said to be strongly stochastically 
observation equivalent with some mth order system ( m s n )  if there exists a 
reduction matrix F E Rm " "  such that a factorization h,=hF holds. If any such 
factorization implies that F is a permutation matrix, then (X, N) will be called 
strongly stochastically observable. 

Some comments are appropriate. Let (X, N) be described by Eq. (8). If (X, N) is 
strongly stochastically observation equivalent with some mth order system, then 
from Propositions 2.12 and 2.13 it follows that this one is described via matrices A 
and C by an equation like (8). Therefore we will also say that ( A ,  C) is strongly 
observation equivalent with (A, C). 

The interpretation is as follows. If we condition the distribution of the future of 
the bivariate stochastic process (f(X), N) on the entire past of (X, N), or 
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equivalently just on the current state X,, then this determines f(X,) only, instead 
of X, itself. We also know from Proposition 2.13 that (f(X), N) is again a 
stochastic system. 

Suppose now that (X, N) is strongly stochastically observable and that F is a 
m x n reduction matrix (m < n). Then a factorization h, = KG always exists for 
another reduction matrix G, which may be the identity (or a permutation matrix). 
However, because then Ker G c Ker h, c Ker F [see Theorem 2.11 (iii)], where the 
last inclusion is strict, it follows that there exists yet another reduction matrix H 
such that HG= F. Hence the conditioning of the distribution of (f(X), N) on X, 
determines strictly more than f(X,). Stated otherwise, f(X,) is not sufficient to 
predict the future distribution of (f(X), N). Note also that in this case (X, N) can 
only be strongly stochastically observation equivalent with another nth order 
system. 

We also mention thaat this definition differs from the current definition of 
stochastic observability in the literature [van Schuppen (1989, p. 490)] for linear 
Gaussian systems, where the future evolution of the state processes is disregarded. 
However the Gaussian analogue of our definition is equivalent with what can be 
found in the literature. The reason behind our alternative is that we now force the 
transformed process f (X)  to be Markov, which is automatically the case in the 
linear Gaussian situation. Therefore a slightly different terminology appears to be 
advisable. The idea behind strong stochastical observation equivalence, is that it 
should provide us with a link to (strong forward) reducibility. Moreover it should 
give us information about what reductions of the original systems are possible. 
This is the content of the next result which, although obvious, brings the concepts 
minimality and observability together. 

THEOREM 2.15 Let (X, N) be given by Eq. (8). Let F be a reduction matrix and 
define A = F A F +  and C = C F + .  

i) F reduces (A, C) if and only if (A, C) is strongly stochastically observation 
equivalent with (A,  C). 

ii) ( A ,  C) is (strongly forwardly) minimal if and only if (A, C) is strongly 
stochastically observable. 

Proof Direct consequence of Definition 2.14, Theorem 2.11 and Proposition 
2.12. 1 

At first glance this theorem seems to be not very helpful, if one is looking for 
possible reduction of (A, C), since Definition 2.14 involves the unknown F that 
describes the reduction. But it turns out that it is a useful step to the finding of the 
F (if any) that reduces (A, C). We first introduce some new notation and an 
auxiliary result. Take in the definition of h>"(t, T) the function v to be identically 
zero and write instead hu(t, T). Observe that this quantity does not depend on the 
specific F any more. By taking u to be a stepfunction we can again, parallel to 
what we did after Lemma 2.10, construct h;(t) E Cn and from these the operators h 
and h,. Some of the properties of the h",.(t, T) and h>,",t) carry over to hu(t, T) and 
the h;(t). There are however some differences. The precise result is the following. 
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PROPOSITION 2.16 Let X = Ker h, Xj = Ker hj. Then 

i) XI 3 X 2 = . . . ,  and Oj"=,Xj=X. 

ii) If for some j Xj = Xj+ ,, then X = Xj and X = Xj is D and A invariant. 
iii) If F reduces (A, C), then Ker F c X ,  hence there exists a factorization h = KF. 
iv) If a factorization h = hF exists such that Ker h = Ker F for a reduction matrix 

F, then F reduces (A, C). 

v) There is equivalence between 
a) hu(t, T) = P(t ,  T)G and Ker h = Ker G for some matrix G; and 

b) R(t, T) satisfies the integral equation 
T 

P(t ,  T) = 1 + j R(s, T)D(u(s))&(s - t) d~ 
f 

where d G  = GD, D(u(s)) = (eiu'" - 1)d and @(t)G = G@(t)., 

Proof (i) and (ii) are proved in the same way as (i), (ii) of Theorem 2.11, (iii) 
follows in the same way as Lemma 2.10, (iv) follows from (ii) and (v) can be 
proved as Proposition 2.12. 1 

Remark The most striking difference between h and hF is the following. 
Suppose that X =Ker h # (0). Then we have a factorization h=EG for some G 
which is such that Ker h=Ker G. It may happen that it is impossible to choose G 
to be a reduction matrix. See Examples 2.23 and 2.24. Notice also that we imposed 
in (v) of Proposition 2.16 that Ker h=Ker G, whereas for the analogous statement 
of Proposition 2.12 the equality KerhF=KerF automatically holds. The next 
proposition implicitly offers a way to compute the Xj and X.  

PROPOSITION 2.17 There exist a sequence of matrices y, as indicated in the proof, 
such that Ker hj = Ker for all j 2 1. 

Proof Let z=eiu- 1 and let (with a little abuse of notation) h;(t)=h;(t). Let 
Wl(z) be the n x n matrix with jth row equal to (a/at) jhZ,(0)=lT(z~+A)j- '  (use 
Eq. (11) with v=O). By the Caley-Hamilton theorem for k 2 n  one has 
(a/at)kh;(0) =xj"~i crkjlT(zD + A)' for some real numbers akj. Hence Ker h, = X if 
and only if W,(z)X = (0) for all z. Next we form the matrix W, in the following 
way. Each row l T ( z D + ~ ) ' - '  of W,(z) can be written as Cg;kzkflkj, where the flkj 
are row vectors in Rn. W, is now the matrix obtained by stacking all the /Ikj in a 
large matrix with n columns. It is evident that Ker h, = Ker W,. In an analogous 
way we can also construct matrices W,{z) via the partial derivatives of h;(t) with 
respect to the vector t evaluated at t=O. And as above by grouping the equal 
powers of z that appear in the rows of Wj(z), we obtain a matrix y.. Hence the Xj 
appearing in Proposition 2.16 are the same as the kernels of the matrices y., 1 

Some additional properties of h are described by the following lemma. 

LEMMA 2.18 

i) For all u E U the function hu(., T) is left differentiable at t =  T and 
(alat)hu(?: T) = - 1 ) ~ .  
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ii) Let V be the n x n Vandermonde matrix with jth row equal to lTD'-'. Then 
Ker h c Ker K 

iii) Assume that there exists a reduction matrix F such that hu(t, T) r p( t ,  T)F. 
Then C can be written as CF. If moreover all the elements of C are different 
from each other, then X = Ker h = Ker F. 

iv) If all the ci are different then Kerh= (0). 

Proof 

i) Immediately follows from Eq. (1 1) since h(T T) = I T  and lTA = 0. 
ii) From Proposition 2.16 we know that Kerh is D invariant and since 

lTKerh=h(?: T)Kerh={O) we have l T ~ j - l K e r h = l T K e r h = { O ) .  

iii) We have to prove that 2 = Ker h= (0). Because of (i) and Lemma 2.5 there 
exists a diagonal matrix D such that FD=bF .  Now 2 = F X .  Hence 
D ~ = D F x =  FDX c F X = ~ .  So 2 is b invariant. If P is the 
Vandermonde matrix with jth row equal lTbj-' then we have as in (ii) 
2 c Ker F? The latter is zero, since all the elements of are assumed to be 
different. 

iv) Follows from (iii). 

The role that the hu(t, T) play in the finding of a matrix F that reduces (X, N) is 
revealed by the following theorem. 

THEOREM 2.19 There is equivalence between 

i) (A, C) is strongly stochastically observation equivalent with (A, C). 

ii) There exists a reduction matrix F such that hu(t, T) = h"(t, T)F  for all t S T 
and all M E  U and a similar factorization holds for any other pair ( A ,  e) where 
= CF. So if 4 is related to (A, e) as h is to (A, C), then: &(t, T) = &t, T)F 

for all t s T  and all U E U .  

Proof (i)=>(ii) From Theorem 2.15 we know that there exists a reduction 
matrix F such that FA= AF and C =  CF. But then in view of the remark after 
Lemma 2.6 F also reduces any (A, e )  where e can be written as CF. Hence from 
Proposition 2.16 we have both the factorization hu(t, T)=h"(t, T)F and &(t, T)= 
&t, T)F. 

(ii)=(i) Since the assumption holds for any C = ~ F ,  we may take all the 
elements of to be different. Then from Lemma 2.18(iii) Ker$=Ker F and from 
Proposition 2.16 Ker F is A invariant, so FA= AF, with A =  FAF'. By 
assumption and from Lemma 2.5 FD=DF. Hence F is a matrix that reduces 
(A, C). The result now follows from Theorem 2.15(i). 

The following result is closely related to Theorem 2.19. 

PROPOSITION 2.20 Let (X, N) satisfy Eq. (8) and let (X, fl) be another stochastic 
system that satisfies an equation like (8) with C=[c,, ..., c,] replaced with 
e = [i.,, . . . , En]  and let X = Ker h and 2 = Ker 4. Assume that there exists a map g 
such that c,=g(i.,). Then 2 c X .  
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Proof 2 is a b and A invariant subspace of Rn, where 6=diag(c)  (Proposi- 
tion 2.16). We claim that 2 is also D invariant. If the claim holds, then it 
immediately follows from Eq. (10) with v =O, that hu(t, ~ ) 2  = {0}, since lT2 = (0). 
Since 2 is b invariant, it is spanned by some eigenvectors of 6. So let k ~ 2  be 
such that 6k=Eik, for one of the eigenvalues of Z i  of 8. Hence for all j we have 
2.k.=E.k. I 1 1  if k =  [k,, ..,, knlT,  If kj=O then certainly cjkj=c.k.. If kj#O then Ej=Ei, ' .' 
but then also cj=ci. So again we have cjkjrcikj. Hence k is an eigenvector of D 
with eigenvalue ci=g(Ei), which shows that X is also D invariant. 

All results so far obtained form the basis of Algorithm 2.21 below, that yields 
for a stochastic system (X, N) a minimal representation. 

1) Compute Kerh and find a reduction matrix F such that hu(t, T)=h"(t, T)F 
and such that R(t, T) cannot be factorized further by means of some other 
reduction matrix. 

2) If Ker h=Ker F, then the algorithm produces F as its outcome. Else we go to 
step 3. 

3) Let C = ~ F ,  where all the Ci are different from each other. Form P(t,  T) 
(which is related to (A, c) as was hu(t, T) to (A, C)). 

4) Apply step 1 to k( t ,  T) in lieu of hu(t, T). 

Before proving that the matrix F produced by the algorithm, induces a minimal 
pair (A,C) defined by A=FAF+, C=CF+,  we discuss the way it works. The 
finding of F in step 1 is relatively simple. Compute Ker h by using the matrices W, 
of Proposition 2.9 as far as needed. This results in a factorization hu(t, T)=  
h""(t, T)G, where G is such that Ker G=Ker h. Next one inspects the columns of G. 
If any two of them are identical, then the same holds for the corresponding 
columns of F, which determines F up to a permutation of its columns. An 
alternative way is to inspect the elements of the h;(t) for all k as far as needed. If 
two columns of F are identical then the same holds for the corresponding elements 
of all the h;(t) and vice versa. If the algorithm stops at step 2, then it follows from 
Proposition 2.16 that F reduces (A, C). If instead Kerh#KerF and step 3 is 
performed then we known from Lemma 2.18 that some of the elements of C 
(which is such that C=CF) are identical. Hence it makes sense to construct as 
prescribed. Then from Proposition 2.20 we obtain that K e r h c  Kerh and more- 
over that this inclusion is strict, since also K e r h c  KerF  in view of Lemma 
2.18(ii), applied to the Vandermonde matrix with rows lT6j- ' ,  which has kernel 
equal to Ker F. Hence the algorithm constructs a strictly decreasing sequence of 
kernels, until it terminates which happens after finitely many iterations. 

THEOREM 2.22 Let F be the final result of Algorithm 2.21. Then F reduces ( A ,  C). 
Hence there exist 2, C with F A  = AF, C = CF. Moreover (A,  C) is minimal. 

Proof The resulting F has the property that in the final iteration a factoriza- 
tion of the form @(t, T) =&t, T)F  holds, where &t, T) corresponds to some pair 
(A, 6)  and where ~ e r f i = ~ e r  F. So Ker F is 6 and A invariant (Proposition 2.16) 
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and also D invariant (see the proof of Proposition 2.20). Hence F reduces (A, C). 
Now let F,  be a matrix that gives a maximal reduction of (A, C). So with 
A=F,AF: and C=CF: we have that (A, C) is a minimal pair. F ,  is determined 
up to a permutation of its columns. Then in step 1 of the algorithm we have a 
factorization (as follows from Proposition 2.16) hu(t, T)=R(t ,  T)F2F,, where 
possibly another reduction matrix is involved. Suppose that step 2 is skipped, 
otherwise the proof is complete. So we construct C = ~ F , F , .  Then of course 
(Lemma 2.5) Ker F ,  is b invariant and therefore p( t ,  T) factorizes as &t, T)F,F,, 
with possibly again another reduction matrix F,, which has the property that 
Ker F3  c Ker F,, because Ker (F,F,) c ~ e r  & c Ker P= K~~(F ,F , ) ,  where P is the 
Vandermonde matrix with jth row equal to lTb'-l. (Use also Lemma 2.18.) 
Hence in each iteration of the algorithm a factorization of functions like hu(t, T) 
holds, where the matrix F l  is always part of the factorization, and where the 
kernels of the F,, F 3  etc. are shrinking. Therefore in the final step of the algorithm 
we have a factorization of the form &=~"F,F,. From the first part of the proof we 
know that F,F, is a matrix that reduces (A, C), but since F ,  gives the minimal 
reduction F, has to be a permutation matrix. I 

In the next two examples, we apply Algorithm 2.21. 

Example 2.23 Let X take its values in {1,2,3,4,5) and let 

Assume that N has the intensity CI: where C =  [l 1 1 1 21. 
The matrix Wl of Proposition 2.17 now becomes (use lTA = 0): 

Now Kerh,=Ker W, is spanned by [l -1 0 0 OIT and [O 1 -2 1 0IT. 
Observe that these two vectors are eigenvectors of both D and A. So Kerh, = 
Ker h. The reduction matrix F in step 1 of Algorithm 2.21 is easily 'seen to be 
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since the first two columns of Wl are identical. Clearly Ker F #Ker h. So step 3 of 
the algorithm applies. Let = [l  3 4 23, = [l 1 3 4 23. Of course one can now 
construct a matrix w1. Then Ker w1 c Ker F (Lemma 2.18(ii)), which is spanned 
by [l  - 1 0 0 OIT.  Since, as observed above [I - 1 0 0 0IT is A and D 
invariant, we see that Ker w1 =Ker F and also, as above, Kerf;=Ker fi1. 

Hence the outcome of the algorithm is 

The next (partially worked) example is, apart from an illustration of Algorithm 
2.21, also interesting in the light of the remark that followed Proposition 2.16. 

Example 2.24 Change the matrix A in the preceding example into 

but let C be the same. If one again computes the matrix W, then it turns out that 
its kernel XI is again spanned by k;=[l - 1 0 0 OIT and kT=[O 1 -2 1 0IT. 
Let K = [k,k,]. A calculation shows that 

AK=K[-5 '1 and DK=K.  
1 -10 

Hence Ker h is spanned by k1 and k,, since already X1 is a D and A invariant 
subspace. The matrix F in step 1 of Algorithm 2.21 is the same as in the preceding 
example. Take again c= [l 1 3 4 21. The matrix contains one row equal to 
l T b ~  = [6 7 - 11 - 19 83. Since Ker f ;  belongs to both Ker w1 and Ker F as 
explained in the discussion after the description of the algorithm, we see that 
Ker &= (0). The F resulting from the algorithm is therefore the identity matrix (or 
another permutation matrix). The intriguing feature of this example is, that in spite 
of the fact that most of the ci are equal, no reduction is possible. 

We close this section with some considerations that indicate ways of future 
research. Let first X,= f ( X , )  and let F be the reduction matrix associated with f: 
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Assume f :{ l ,  ..., n ) + { l , .  . ., m}. Trivially each entry F t j  of F has the following 
interpretation: F~~ = P ( X ,  = i 1 X, =j). In both the two examples above we can 
factorize h as KG, where 

Observe that each column of G can be considered as a probability vector. The 
idea is now to extend the interpretation of the F i j  as a conditional probability to 
the entries of G. This idea allows us to consider so-called probabilistic reductions 
of the system (X, N) by looking at suitably defined random functions of X,. This 
new approach seems to be connected with the behaviour of the solutions of the 
filtering problem that is defined by the finding of E [ K ( ~ ; ] .  Results in this 
direction will be reported in another publication. We only mention that in the last 
example the following identity holds: GA = AG, where 

which is indeed the rate matrix of some Markov process, that lives on a state 
space with three elements. This already indicates that some reduction, of another 
type than described in this section, should be possible. 
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